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Solenoids - nice compact spaces

Solenoid: a topological group Σ identified with an inverse limit
of compact spaces lim←−n∈N Gn with connecting maps z 7→ zK .

Starting from the subgroup of rationals, for p ∈ N \ {0},

Z
[
1

p

]
=

{
a

pk
∈ Q | a ∈ Z, k ∈ N

}
,

write it as an inductive limit

Z k 7→pk−→ Z k 7→pk−→ Z→ · · ·

and form its Pontryagin dual

lim←−T = T z 7→zp←− T z 7→zp←− T ←−

to get the p-solenoid

Sp = {(zn)n ∈ TN | zpn+1 = zn, n ∈ N},

a compact group endowed with the topology inherited from the
product TN.
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Noncommutative solenoids

Latrémolière and Packer (2013): Defined nc solenoids as
twisted group C ∗-algebras C ∗(Γ, σθ) for a 2-cocycle that
resembles the one on Z2 giving the rotation algebra
Aθ = C ∗(Z2, σθ), with θ ∈ R.
Let p be a prime. Idea: replace Z2 with the group

Γ = Z
[
1

p

]
× Z

[
1

p

]
and pick the parameter θ in Sp. Specifically, let Ωp be

{θ = (θn) ∈ Π∞
n=0[0, 1)n | ∀n ∈ N, pθn = θn−1 mod Z}.

The noncommutative solenoid AS
θ is C ∗(Γ, σθ) with multiplier((

a1
pk1

,
a2
pk2

)
,

(
a3
pk3

,
a4
pk4

))
σθ−→ e2πiθk1+k4

a1a4 .
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Noncommutative solenoids as nc spaces

1 Latrémolière and Packer, a series of papers (2015
onwards): the nc solenoids AS

θ ’s have a structure of
Leibniz quantum compact metric spaces and are limits in
the Gromov-Hausdorff propinquity of noncommutative tori.

2 Austad-Luef (2021): a byproduct of their Gabor analysis is
a description of a spectral triple on some nc solenoid.

3 Aiello-Guido-Isola a series of papers (2017 onwards): direct
limit spectral triples which apply to periodic nc solenoids.

4 Enstad (2020): a Balian-Low theorem in the context of nc
solenoids.

5 Lu (2022): a Morita equivalence study of nc solenoids

Questions: do (arbitrary) nc solenoids admit a fully-fledged
theory of spectral triples?
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Spectral triples for noncommutative solenoids

Our motivation and interest refer to:

1 Produce spectral triples on all noncommutative solenoids,
including aperiodic ones (with simple C*-algebras), i.e.
those where θj ̸= θk for j ̸= k in N.

2 See if the spectral triple harmonizes with the inductive
limit structure of AS

θ as a limit of noncommutative tori,
i.e. show that it is an inductive system (a’la
Floricel-Ghorbanpour) of spectral triples on nc tori.

3 See if the spectral triple gives a Leibniz quantum compact
metric space.

4 Show that there is a dense Fréchet ∗-subalgebra of AS
θ

that is stable under the holomorphic functional calculus.



Spectral
triples for non-
commutative
solenoids

Nadia S.
Larsen

University of
Oslo

Twisted group algebras

Let σ be any multiplier of the countable discrete group Γ, i.e.,
a 2-cocycle on Γ taking values in T. For any f1, f2 ∈ ℓ1(Γ), the
twisted convolution ∗σ is given by

f1 ∗σ f2 : γ ∈ Γ 7→
∑
γ1∈Γ

f1(γ1)f2((γ1)
−1γ)σ(γ1, (γ1)

−1γ),

and the adjoint operation by

f ∗1 : γ ∈ Γ 7→ f1(γ−1)σ(γ, γ−1).

Given a discrete group Γ and a multiplier σ on Γ, we define the
left-σ regular representation λσ of the group algebra ℓ1(Γ, σ)
on ℓ2(Γ) by, for all f ∈ ℓ1(Γ, σ), g ∈ ℓ2(Γ), γ1, γ ∈ Γ:(

λσ(f )(g)
)
(γ) =

∑
γ1∈Γ

σ(γ1, γ
−1
1 γ)f (γ1)g(γ

−1
1 γ).
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Noncommutative solenoids as inductive limits

Fix the set of parameters

Ωp = {θ = (θn) ∈ Π∞
n=0[0, 1)n | ∀n, pθn = θn−1 modZ}.

Similar to Aθ’s inductive limit realization as lim−→ C ∗(Z2), the

noncommutative solenoid AS
θ has an inductive limit realization:

lim−→
n∈N

Aθ2n = Aθ0
φ0−→ Aθ2

φ1−→ Aθ4
φ2−→ · · · Aθ2n

φn−→ Aθ2n+2 · · ·

To get this, restrict σθ to Γn = 1
pnZ×

1
pnZ, subgroup of Γ,

note that the generators W(1/pn,0), W(0,1/pn) of AS
θ involve the

even indices θ2n in the parameter (k1 = k4 = n), and that

C ∗
( 1

pn
Z× 1

pn
Z, (σθ)n

)
∼= Aθ2n

∼= C ∗(Z2, σθ2n).
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Noncommutative solenoids as inductive limits

Recall

Ωp = {θ = (θn) ∈ Π∞
n=0[0, 1)n | ∀n, pθn = θn−1 modZ}.

Example (periodic rational case): cf. Aiello-Guido-Isola
(2017). Let p = 2 and θ = (23 ,

1
3 ,

2
3 ,

1
3 , · · · ). This gives a

noncommutative solenoid of periodic type

AS
θ = lim−→

n

A 2
3
,

a direct limit of (copies of) the rational rotation algebra A2/3.

Aiello-Guido-Isola construct semifinite spectral triples on AS
θ .

Example (non-periodic rational case): p a prime, a ∈ Z,
gcd(a, q) = 1. We have θ = (θn) ∈ Ωp, and associated AS

θ , for

θ0 =
a

q
, θ1 =

a

pq
, θ2 =

a

p2q
, . . . , θ2n =

a

p2nq
, . . .
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Spectral triples

Following Connes, a spectral triple (A,H,D) consists of a
unital C ∗-algebra A, a unital faithful representation π of A on a
Hilbert space H, and a self-adjoint operator
D : dom(D) ⊆ H → H such that

(ST1) the operator D has compact resolvent
Rλ(D) = (D − λIdH)−1, λ ∈ C \ spec(D),

(ST2) there exists a dense ∗-subalgebra A, smooth subalgebra
of A, such that for every a ∈ A the commutator

[D, π(a)] := Dπ(a)− π(a)D

is densely defined and extends to a bounded operator on
H.

The classical case of C (M) with H as the L2-spinors on M
recovers the geodesic distance by

d(x , y) = sup{|f (x)− f (y)| | f ∈ C (M), ∥[D, f ]∥B(H) ≤ 1}.
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Spectral triples from length functions on groups

Definition (Connes, Rieffel)

A length function on a discrete group Γ is L : Γ→ [0,∞)
such that

1 L(γ) = 0 if and only if γ = e, where e is the identity of Γ,

2 L(γ) = L(γ−1) for all γ ∈ Γ,

3 L(γ1γ2) ≤ L(γ1) + L(γ2) for all γ1, γ2 ∈ Γ.

A Dirac operator DL on Cc(Γ) (or Cc(Γ, σ)) associated to L:

DL(f )(γ) = L(γ)f (γ), γ ∈ Γ.

Candidate for a spectral triple (Γ usually finite generated)(
C ∗(Γ, σ), ℓ2(Γ),DL

)
.

Depending on L, this could become a bona fide spectral triple.
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Length functions on discrete groups

A length function L : Γ→ [0,∞) is proper if every ball

BL(R) := {γ ∈ Γ : L(γ) ≤ R},

with 0 ≤ R <∞ is finite, and has bounded doubling if

|BL(2R)| ≤ CL |BL(R)|

for some finite constant CL. Alternatively, cf. Long-Wu
(2021), L is of bounded t-dilation for a fixed t > 1 if L is
proper and

|BL(tR)| ≤ KL |BL(R)|

for some finite constant KL and all R ≥ 1.
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Length functions on p-adic rationals

Proposition (Farsi-Landry-L-Packer)

Fix a prime p. Then Lp : Z
[
1
p

]
→ [0,∞) given by

Lp(r) := |r |+ ∥r∥p for r ∈ Z
[1
p

]
is a length function of bounded doubling with CLp = 4p8.

Consequently, L : Z
[
1
p

]
× Z

[
1
p

]
→ [0,∞) given by

L(γ1, γ2) := Lp(γ1) + Lp(γ2)

is a length function of bounded doubling with CL = (4p8)4.

Key: the diagonal embedding r 7→ (r ,−r) of Z[1/p] into
R×Qp.
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Spectral triple

Theorem (Farsi-Landry-L-Packer, 2022)

Fix a prime p. Let Γ = Z
[
1
p

]
× Z

[
1
p

]
, θ ∈ Ωp and C ∗(Γ, σθ)

with its left regular representation λσ on H = ℓ2(Γ). Define Dp

as the (unbounded) operator on H = ℓ2(Γ) given by pointwise
multiplication by L. Then

(AS
θ ,H,Dp)

with representation λσ is a finitely summable spectral triple for
the noncommutative solenoid AS

θ with associated smooth
subalgebra CC (Γ, σθ).
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Length function of bounded doubling

About the proof: We use a length function on Γ with the
property of bounded doubling or bounded t-dilation. Similar to
arguments by Long-Wu, we have that the bounded doubling
property implies that for t > log(CL),

(IdH +D2
p)

−t/2 is trace class;

this requires convergence∑
γ∈Γ

1

(1 + L(γ)2)t/2
<∞.

The idea is to partition Γ and estimate the number of
eigenvalues in distinct annuli, namely

Γ = BL(1) ⊔
∞⊔
n=1

[BL(2
n)\BL(2

n−1)].
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Noncommutative solenoids and spectral triples

Theorem (Aiello-Guido-Isola)

(2017) Let A1 be a C ∗-algebra acted upon a finite abelian
group G whose fixed-point algebra A0 is isomorphic to A1, and
so that the eigenspaces of A1 under G contain invertible
elements. Form the inductive limit lim−→n

An, with An
∼= A1,

seen as embedded in A0 ⊗ UHF (r∞), r = |G |.
There is a finitely summable, semifinite spectral triple with
Dirac operator

D0 ⊗ I − 2π
2∑

a=1

ϵa ⊗ I ⊗ (
∞∑
j=1

I⊗(j−1) ⊗ xaj ),

with xaj acting diagonally and determined by sections sj of ẐB

into AjZ2, for A,B certain matrices.
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Spectral triples on general nc solenoids - I

Austad- Luef: spectral triples for noncommutative solenoids via
Gabor analysis.
A Gabor system generated by g ∈ L2(R×Qp) and the lattice

Λ = {(αq, q, βr , r) | q, r ∈ Z[1/p], α, β > 0}

is a family

{π(λ)g}λ∈Λ = {(t∞, tp) 7→ e2πi(βrt∞−{rtp}p)g(t∞−αq,tp−q)}

A Dirac operator can be defined as

(
0 f
f 0

)
, with

f = vs(x , ω, q, r) determining a weighted Feichtinger algebra,

f = (1 + |x |2 + |ω|2 + |q|2 + |r |2)s/2, s ≥ 0.
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Spectral triples and inductive limits

Floricel-Ghorbanpour framework (2019): A morphism between
two spectral triples (A1,H1,D1) and (A2,H2,D2) with
respective smooth subalgebras A1 and A2 is a pair (ϕ, I ) of a
unital ∗-homomorphism ϕ : A1 → A2 and a bounded linear
operator I : H1 → H2 with

1 ϕ(A1) ⊆ A2,

2 π1(a) = π2(ϕ(a))I , for every a ∈ A1,

3 I (dom(D1)) ⊆ dom(D2) and ID1 = D2I .

For an inductive system of spectral triples

{(Aj ,Hj ,Dj), (ϕj ,k , Ij ,k)j≤k}J ,

an inductive realization consists of A = limAj , H = limHj ,
π = limπj , A = limAj and D defined by Dξ = IjDjξj on
ξ = Ijξj , ξj ∈ dom(Dj). A priori, it need not be a spectral triple.
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Spectral triples and inductive limits

Theorem (Floricel-Ghorbanpour (2019))

Given an inductive system of spectral triples

{(Aj ,Hj ,Dj), (ϕj ,k , Ij ,k)j≤k}J ,

with inductive realization (A,H,D) and A = limAj , the
following hold:

(a) D has compact resolvent iff the sequence {IjRλ(Dj)I
∗
j }j∈N

converges uniformly to Rλ(D) for some (every) λ ∈ C\R.

(b) The operator [D, π(ϕj(a))] is bounded if and only if the
family of operators {[Dk , πk(ϕj ,k(a))]}k≥j is uniformly
bounded.

Examples here: systems whose inductive realizations are
spectral triples for AF-algebras (motivated by work of
Christensen-Ivan).
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Restriction to noncommutative tori

Proposition

Fix p, θ ∈ Ωp, n ∈ N. The restriction Lp,n of Lp to 1
pnZ is a

length function of bounded doubling. For every θ ∈ Ωp, let

πθ2n : C
∗(Z2, σθ2n)→ B(ℓ2(Γn))

be the regular representation of C ∗(Γn, (σθ)n) followed by

C ∗(Z2, σθ2n)
∼= C ∗(Γn, (σθ)n).

The triple (obtained by restricting Dp to ℓ2(Γn))

(C ∗(Z2, σθ2n), ℓ
2(Γn),Dp,n)

with representation πθ2n is a spectral triple for the
noncommutative torus C ∗(Z2, σθ2n), with smooth subalgebra
CC (Z2, σθ2n).
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The spectral triple on ASθ as inductive limit

Theorem (Farsi-Landry-L-Packer)

Fix a prime p. Let Γ = Z
[
1
p

]
× Z

[
1
p

]
and for each j ∈ N, set

Γj =
1
pj
Z× 1

pj
Z. For every θ ∈ Ωp, the triple (AS

θ , ℓ
2(Γ),Dp)

with smooth subalgebra CC (Γ, σθ) can be written as the
inductive realization of

{ (C ∗(Z2, σθ2j ), ℓ
2(Γj),Dp,j), (ϕj ,k , Ij ,k) }j∈N,

each term with smooth subalgebra (CC (Z2, σθ2j )).

Furthermore, the inductive realization (AS
θ , ℓ

2(Γ),Dp) of the
inductive system is itself a spectral triple, with compatible
associated smooth subalgebras.

Need {Ij(Dp,j − it)−1I ∗j }j∈N to converge in norm to

(Dp − it)−1, and the family of commutators
{ [Dp,k , πθ2k (ϕJ,k(g))] }k≥J to be uniformly bounded.
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Quantum compact metric spaces

A quantum compact metric space (A, L) is an ordered pair
where A is a unital C*-algebra and L is a seminorm defined on
a dense ∗-subalgebra dom(L) of the self-adjoint elements Asa

such that:

(1) {a ∈ Asa : L(a) = 0} = R1A,
(2) the Monge-Kantorovich metric mkL, defined on the state

space S(A) of A by setting for all φ,ψ ∈ S(A):

mkL(φ,ψ) = sup {|φ(a)− ψ(a)| : a ∈ dom(L), L(a) ≤ 1}

metrizes the weak* topology restricted to the state space
S(A) of A.

Such L on A is referred to as a Lip-norm.
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Leibniz quantum compact metric spaces

A pair (A, L) with L being a Lip-norm on A is a Leibniz
quantum compact metric space provided that L is lower
semicontinuous wrt the norm topology restricted on its domain
and, further, L satisfies

max
{
L
(ab + ba

2

)
, L
(ab − ba

2i

)}
≤ L(a) ∥b∥+ ∥a∥ L(b).

Relying on characterisations due to Long-Wu of Lip-norms on
twisted group C*-algebras with length functions of bounded
doubling (extending results of Christ-Rieffel), we have:

Theorem (Farsi-Landry-L-Packer)

For each prime p and θ ∈ Ωp, the nc solenoid AS
θ with LDp

given by
LDp(a) = ∥[Dp, λσ(a)]∥B(ℓ2(Γ))

is a Leibniz quantum compact metric space.
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Noncommutative solenoids - smooth subalgebras

Theorem (Austad, 2021)

Let G be a locally compact group and σ a multiplier on G.
Assume that L1(Gc) is symmetric, with Gc = G × T the
Mackey group of C. Then L1(G , c) is symmetric. In particular,
for any faithful representation π : L1(G , σ)→ B(H),

specL1(G ,σ)(f ) = specB(H)(π(f )) (1)

for each f ∈ L1(G , σ).

Combining this with results of Ludwig, we get the following:

Lemma
Let Γ be a countable discrete nilpotent group and σ a
multiplier on Γ. Recall the left-σ regular representation on
ℓ1(Γ, σ). If f ∈ ℓ1(Γ, σ), then

specℓ1(Γ,σ)(f ) = specB(ℓ2(Γ))(λσ(f )). (2)
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A Wiener’s lemma for twisted group C ∗-algebras

Extending Jolissaint’s work to the twisted case, via results of
Austad and Schweitzer, we obtain:

Theorem (Farsi-Landry-L-Packer)

Let Γ be a countable discrete nilpotent group and σ a
multiplier on Γ. Suppose that L is a length function on Γ.
Then the twisted Fréchet ∗-subalgebra H1,∞

L (Γ, σ) is dense and
has the property of spectral invariance in C ∗(Γ, σ). Therefore,
H1,∞
L (Γ, σ) is stable in C ∗(Γ, σ) under the holomorphic

functional calculus.
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Nc solenoids - fully fledged spectral triple

Theorem (Farsi-Landry-L-Packer)

Fix a prime p. Let Γ = Z
[
1
p

]
× Z

[
1
p

]
. For every θ ∈ Ωp,

(AS
θ , ℓ

2(Γ),Dp) with representation λσθ
is a spectral triple for

the noncommutative solenoid C ∗(Γ, σθ) = AS
θ , with

associated smooth subalgebra

H1,∞
L (Γ, σθ) = {f : Γ→ C |

∑
γ

|f (γ)(1 + L(γ))| <∞}.

Furthermore, the twisted Fréchet ∗-subalgebra H1,∞
L (Γ, σθ) is a

proper dense subalgebra of C ∗(Γ, σθ) = AS
θ that is stable

under the holomorphic functional calculus.

THANK YOU.


