> Nadia S. Larsen University of Oslo

Spectral triples for noncommutative solenoids

Nadia S. Larsen University of Oslo

with Carla Farsi, Therese B. Landry and Judith Packer

Developments in Modern Mathematics WiMGo conference, University of Göttingen 18-20 September 2023

Nadia S. Larsen University of Oslo

Solenoids - nice compact spaces

Solenoid: a topological group Σ identified with an inverse limit of compact spaces $\lim_{n \in \mathbb{N}} G_n$ with connecting maps $z \mapsto z^K$. Starting from the subgroup of rationals, for $p \in \mathbb{N} \setminus \{0\}$,

$$\mathbb{Z}\left[\frac{1}{p}\right] = \left\{\frac{a}{p^k} \in \mathbb{Q} \mid a \in \mathbb{Z}, k \in \mathbb{N}\right\},\$$

write it as an inductive limit

$$\mathbb{Z} \stackrel{k\mapsto pk}{\longrightarrow} \mathbb{Z} \stackrel{k\mapsto pk}{\longrightarrow} \mathbb{Z} \to \cdots$$

and form its Pontryagin dual

$$\varprojlim \mathbb{T} = \mathbb{T} \stackrel{z\mapsto z^p}{\longleftarrow} \mathbb{T} \stackrel{z\mapsto z^p}{\longleftarrow} \mathbb{T} \longleftarrow$$

to get the p-solenoid

$$\mathcal{S}_{p} = \{(z_{n})_{n} \in \mathbb{T}^{\mathbb{N}} \mid z_{n+1}^{p} = z_{n}, n \in \mathbb{N}\},\$$

a compact group endowed with the topology inherited from the product $\mathbb{T}^{\mathbb{N}}.$

> Nadia S. Larsen University of Oslo

Noncommutative solenoids

Latrémolière and Packer (2013): Defined nc solenoids as twisted group C^* -algebras $C^*(\Gamma, \sigma_\theta)$ for a 2-cocycle that resembles the one on \mathbb{Z}^2 giving the rotation algebra $A_\theta = C^*(\mathbb{Z}^2, \sigma_\theta)$, with $\theta \in \mathbb{R}$. Let p be a prime. Idea: replace \mathbb{Z}^2 with the group

$$\Gamma = \mathbb{Z}\left[rac{1}{
ho}
ight] imes \mathbb{Z}\left[rac{1}{
ho}
ight]$$

and pick the parameter θ in \mathcal{S}_p . Specifically, let Ω_p be

 $\{\theta = (\theta_n) \in \Pi_{n=0}^{\infty} [0,1)_n \mid \forall n \in \mathbb{N}, \ p\theta_n = \theta_{n-1} \bmod \mathbb{Z} \}.$

The *noncommutative solenoid* $\mathcal{A}^{\mathcal{S}}_{\theta}$ is $C^*(\Gamma, \sigma_{\theta})$ with multiplier

$$\left(\left(\frac{a_1}{p^{k_1}},\frac{a_2}{p^{k_2}}\right),\left(\frac{a_3}{p^{k_3}},\frac{a_4}{p^{k_4}}\right)\right) \stackrel{\sigma_{\theta}}{\longrightarrow} e^{2\pi i\theta_{k_1+k_4}a_1a_4}$$

> Nadia S. Larsen University of Oslo

Noncommutative solenoids as nc spaces

- Latrémolière and Packer, a series of papers (2015 onwards): the nc solenoids A^S_θ's have a structure of Leibniz quantum compact metric spaces and are limits in the Gromov-Hausdorff propinquity of noncommutative tori.
- 2 Austad-Luef (2021): a byproduct of their Gabor analysis is a description of a spectral triple on some nc solenoid.
- Aiello-Guido-Isola a series of papers (2017 onwards): direct limit spectral triples which apply to periodic nc solenoids.
- Enstad (2020): a Balian-Low theorem in the context of nc solenoids.

5 Lu (2022): a Morita equivalence study of nc solenoids Questions: do (arbitrary) nc solenoids admit a fully-fledged theory of spectral triples?

> Nadia S. Larsen University of Oslo

Spectral triples for noncommutative solenoids

Our motivation and interest refer to:

- Produce spectral triples on all noncommutative solenoids, including aperiodic ones (with simple C*-algebras), i.e. those where θ_j ≠ θ_k for j ≠ k in N.
- 2 See if the spectral triple harmonizes with the inductive limit structure of A^S_θ as a limit of noncommutative tori, i.e. show that it is an inductive system (a'la Floricel-Ghorbanpour) of spectral triples on nc tori.
- See if the spectral triple gives a Leibniz quantum compact metric space.
- Show that there is a dense Fréchet *-subalgebra of A^S_θ that is stable under the holomorphic functional calculus.

> Nadia S. Larsen University of Oslo

Twisted group algebras

Let σ be any multiplier of the countable discrete group Γ , i.e., a 2-cocycle on Γ taking values in \mathbb{T} . For any $f_1, f_2 \in \ell^1(\Gamma)$, the twisted convolution $*_{\sigma}$ is given by

$$f_1 *_{\sigma} f_2 : \gamma \in \Gamma \mapsto \sum_{\gamma_1 \in \Gamma} f_1(\gamma_1) f_2((\gamma_1)^{-1} \gamma) \sigma(\gamma_1, (\gamma_1)^{-1} \gamma),$$

and the adjoint operation by

$$f_1^*: \gamma \in \Gamma \mapsto \overline{f_1(\gamma^{-1}) \, \sigma(\gamma, \gamma^{-1})}.$$

Given a discrete group Γ and a multiplier σ on Γ , we define the left- σ regular representation λ_{σ} of the group algebra $\ell^{1}(\Gamma, \sigma)$ on $\ell^{2}(\Gamma)$ by, for all $f \in \ell^{1}(\Gamma, \sigma)$, $g \in \ell^{2}(\Gamma)$, $\gamma_{1}, \gamma \in \Gamma$:

$$\Bigl(\lambda_{\sigma}(f)(g)\Bigr)(\gamma) \;=\; \sum_{\gamma_1\in \mathsf{\Gamma}} \sigma(\gamma_1,\gamma_1^{-1}\gamma)f(\gamma_1)g(\gamma_1^{-1}\gamma).$$

> Nadia S. Larsen University of Oslo

Noncommutative solenoids as inductive limits

Fix the set of parameters

$$\Omega_p = \{\theta = (\theta_n) \in \Pi_{n=0}^{\infty} [0,1)_n \mid \forall n, \ p\theta_n = \theta_{n-1} \ \operatorname{mod} \mathbb{Z} \}.$$

Similar to A_{θ} 's inductive limit realization as $\varinjlim C^*(\mathbb{Z}^2)$, the noncommutative solenoid $\mathcal{A}_{\theta}^{\mathcal{S}}$ has an inductive limit realization:

$$\lim_{n\in\mathbb{N}}A_{\theta_{2n}}=A_{\theta_0}\xrightarrow{\varphi_0}A_{\theta_2}\xrightarrow{\varphi_1}A_{\theta_4}\xrightarrow{\varphi_2}\cdots A_{\theta_{2n}}\xrightarrow{\varphi_n}A_{\theta_{2n+2}}\cdots$$

To get this, restrict σ_{θ} to $\Gamma_n = \frac{1}{p^n} \mathbb{Z} \times \frac{1}{p^n} \mathbb{Z}$, subgroup of Γ , note that the generators $W_{(1/p^n,0)}$, $W_{(0,1/p^n)}$ of $\mathcal{A}^{\mathcal{S}}_{\theta}$ involve the even indices θ_{2n} in the parameter $(k_1 = k_4 = n)$, and that

$$C^*\Big(rac{1}{p^n}\mathbb{Z} imesrac{1}{p^n}\mathbb{Z},(\sigma_ heta)_n\Big)\ \cong\ A_{ heta_{2n}}\ \cong\ C^*(\mathbb{Z}^2,\ \sigma_{ heta_{2n}}).$$

Noncommutative solenoids as inductive limits

Recall

$$\Omega_p = \{\theta = (\theta_n) \in \Pi_{n=0}^{\infty} [0,1)_n \mid \forall n, \ p\theta_n = \theta_{n-1} \ \mathsf{mod} \ \mathbb{Z} \}.$$

Example (periodic rational case): cf. Aiello-Guido-Isola (2017). Let p = 2 and $\theta = (\frac{2}{3}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \cdots)$. This gives a noncommutative solenoid of periodic type

$$\mathcal{A}_{\theta}^{\mathcal{S}} = \varinjlim_{n} A_{\frac{2}{3}},$$

a direct limit of (copies of) the rational rotation algebra $A_{2/3}$. Aiello-Guido-Isola construct semifinite spectral triples on \mathcal{A}_{θ}^{S} . **Example (non-periodic rational case)**: p a prime, $a \in \mathbb{Z}$, gcd(a,q) = 1. We have $\theta = (\theta_n) \in \Omega_p$, and associated \mathcal{A}_{θ}^{S} , for

$$\theta_0 = \frac{a}{q}, \theta_1 = \frac{a}{pq}, \theta_2 = \frac{a}{p^2 q}, \dots, \theta_{2n} = \frac{a}{p^{2n} q}, \dots$$

Nadia S. Larsen University of Oslo

Spectral triples

Nadia S. Larsen University of Oslo

Following Connes, a **spectral triple** (A, H, D) consists of a unital C^{*}-algebra A, a unital faithful representation π of A on a Hilbert space H, and a self-adjoint operator $D: \operatorname{dom}(D) \subseteq H \to H$ such that (ST1) the operator D has compact resolvent $R_{\lambda}(D) = (D - \lambda \operatorname{Id}_{H})^{-1}, \ \lambda \in \mathbb{C} \setminus \operatorname{spec}(D),$ (ST2) there exists a dense *-subalgebra \mathcal{A} , smooth subalgebra of A, such that for every $a \in A$ the commutator $[D, \pi(a)] := D\pi(a) - \pi(a)D$

is densely defined and extends to a bounded operator on H.

The classical case of C(M) with H as the L^2 -spinors on M recovers the geodesic distance by

 $d(x,y) = \sup\{|f(x) - f(y)| \mid f \in C(M), \|[D,f]\|_{B(H)} \le 1\}.$

> Nadia S. Larsen University of Oslo

Spectral triples from length functions on groups

Definition (Connes, Rieffel)

A length function on a discrete group Γ is $\mathbb{L}:\Gamma\to [0,\infty)$ such that

L(γ) = 0 if and only if γ = e, where e is the identity of Γ,
 L(γ) = L(γ⁻¹) for all γ ∈ Γ,
 L(γ₁γ₂) ≤ L(γ₁) + L(γ₂) for all γ₁, γ₂ ∈ Γ.

A Dirac operator $D_{\mathbb{L}}$ on $C_c(\Gamma)$ (or $C_c(\Gamma, \sigma)$) associated to \mathbb{L} :

$$D_{\mathbb{L}}(f)(\gamma) = \mathbb{L}(\gamma)f(\gamma), \gamma \in \Gamma.$$

Candidate for a spectral triple (Γ usually finite generated)

$$(C^*(\Gamma, \sigma), \ell^2(\Gamma), D_{\mathbb{L}}).$$

Depending on \mathbb{L} , this could become a bona fide spectral triple.

> Nadia S. Larsen University of Oslo

A length function $\mathbb{L}:\Gamma\to [0,\infty)$ is proper if every ball

$$B_{\mathbb{L}}(R) := \{ \gamma \in \mathsf{\Gamma} : \mathbb{L}(\gamma) \leq R \},$$

with $0 \le R < \infty$ is finite, and has **bounded doubling** if

 $|B_{\mathbb{L}}(2R)| \leq C_{\mathbb{L}} |B_{\mathbb{L}}(R)|$

for some finite constant $C_{\mathbb{L}}$. Alternatively, cf. Long-Wu (2021), \mathbb{L} is of **bounded t-dilation** for a fixed t > 1 if \mathbb{L} is proper and

 $|B_{\mathbb{L}}(\mathbf{t}R)| \leq K_{\mathbb{L}} |B_{\mathbb{L}}(R)|$

for some finite constant $K_{\mathbb{L}}$ and all $R \geq 1$.

> Nadia S. Larsen University of Oslo

Length functions on *p*-adic rationals

Proposition (Farsi-Landry-L-Packer)
Fix a prime p. Then
$$\mathbb{L}_p : \mathbb{Z}\left[\frac{1}{p}\right] \to [0,\infty)$$
 given by

$$\mathbb{L}_p(r) := |r| + \|r\|_p$$
 for $r \in \mathbb{Z}\Big[rac{1}{p}\Big]$

is a length function of bounded doubling with $C_{\mathbb{L}_p} = 4p^8$.

Consequently,
$$\mathbb{L} : \mathbb{Z}\left[\frac{1}{p}\right] \times \mathbb{Z}\left[\frac{1}{p}\right] \to [0,\infty)$$
 given by
 $\mathbb{L}(\gamma_1,\gamma_2) := \mathbb{L}_p(\gamma_1) + \mathbb{L}_p(\gamma_2)$

is a length function of bounded doubling with $C_{\mathbb{L}} = (4p^8)^4$. Key: the diagonal embedding $r \mapsto (r, -r)$ of $\mathbb{Z}[1/p]$ into $\mathbb{R} \times \mathbb{Q}_p$.

Nadia S. Larsen University of Oslo

Spectral triple

Theorem (Farsi-Landry-L-Packer, 2022) Fix a prime p. Let $\Gamma = \mathbb{Z}\begin{bmatrix} \frac{1}{p} \end{bmatrix} \times \mathbb{Z}\begin{bmatrix} \frac{1}{p} \end{bmatrix}$, $\theta \in \Omega_p$ and $C^*(\Gamma, \sigma_\theta)$ with its left regular representation λ_σ on $H = \ell^2(\Gamma)$. Define \mathcal{D}_p as the (unbounded) operator on $H = \ell^2(\Gamma)$ given by pointwise multiplication by \mathbb{L} . Then

$$(\mathcal{A}_{\theta}^{\mathcal{S}}, H, \mathcal{D}_{p})$$

with representation λ_{σ} is a finitely summable spectral triple for the noncommutative solenoid $\mathcal{A}_{\theta}^{\mathcal{S}}$ with associated smooth subalgebra $C_{\mathcal{C}}(\Gamma, \sigma_{\theta})$.

Nadia S. Larsen University of Oslo

Length function of bounded doubling

About the proof: We use a length function on Γ with the property of *bounded doubling* or *bounded t-dilation*. Similar to arguments by Long-Wu, we have that the bounded doubling property implies that for $t > \log(C_{\mathbb{L}})$,

$$(\operatorname{\mathsf{Id}}_H + \mathcal{D}_p^2)^{-t/2}$$
 is trace class;

this requires convergence

$$\sum_{\gamma\in\Gamma}rac{1}{(1+\mathbb{L}(\gamma)^2)^{t/2}}<\infty.$$

The idea is to partition Γ and estimate the number of eigenvalues in distinct annuli, namely

$$\Gamma = B_{\mathbb{L}}(1) \sqcup \bigsqcup_{n=1}^{\infty} [B_{\mathbb{L}}(2^n) ackslash B_{\mathbb{L}}(2^{n-1})].$$

Nadia S. Larsen University of Oslo

Noncommutative solenoids and spectral triples

Theorem (Aiello-Guido-Isola)

(2017) Let \mathcal{A}_1 be a C^* -algebra acted upon a finite abelian group G whose fixed-point algebra \mathcal{A}_0 is isomorphic to \mathcal{A}_1 , and so that the eigenspaces of \mathcal{A}_1 under G contain invertible elements. Form the inductive limit $\lim_{n \to n} \mathcal{A}_n$, with $\mathcal{A}_n \cong \mathcal{A}_1$, seen as embedded in $\mathcal{A}_0 \otimes UHF(r^{\infty})$, r = |G|. There is a finitely summable, semifinite spectral triple with Dirac operator

$$D_0 \otimes I - 2\pi \sum_{a=1}^2 \epsilon^a \otimes I \otimes (\sum_{j=1}^\infty I^{\otimes (j-1)} \otimes x_j^a),$$

with x_j^a acting diagonally and determined by sections s_j of $\widehat{\mathbb{Z}}_B$ into $A^j \mathbb{Z}^2$, for A, B certain matrices.

> Nadia S. Larsen University of Oslo

Austad- Luef: spectral triples for noncommutative solenoids via Gabor analysis.

Spectral triples on general nc solenoids - I

A Gabor system generated by $g \in L^2(\mathbb{R} \times \mathbb{Q}_p)$ and the lattice

$$\Lambda = \{ (\alpha q, q, \beta r, r) \mid q, r \in \mathbb{Z}[1/p], \alpha, \beta > 0 \}$$

is a family

$$\{\pi(\lambda)g\}_{\lambda\in\Lambda}=\{(t_{\infty},t_{p})\mapsto e^{2\pi i(\beta rt_{\infty}-\{rt_{p}\}_{p})g(t_{\infty}-\alpha q,t_{p}-q)}\}$$

A Dirac operator can be defined as $\begin{pmatrix} 0 & f \\ f & 0 \end{pmatrix}$, with $f = v_s(x, \omega, q, r)$ determining a weighted Feichtinger algebra,

$$f = (1 + |x|^2 + |\omega|^2 + |q|^2 + |r|^2)^{s/2}, s \ge 0.$$

> Nadia S. Larsen University of Oslo

Spectral triples and inductive limits

Floricel-Ghorbanpour framework (2019): A morphism between two spectral triples (A_1, H_1, D_1) and (A_2, H_2, D_2) with respective smooth subalgebras A_1 and A_2 is a pair (ϕ, I) of a unital *-homomorphism $\phi : A_1 \to A_2$ and a bounded linear operator $I : H_1 \to H_2$ with

2 $\pi_1(a) = \pi_2(\phi(a))I$, for every $a \in A_1$,

3 $I(\operatorname{dom}(D_1)) \subseteq \operatorname{dom}(D_2)$ and $ID_1 = D_2I$.

For an inductive system of spectral triples

$$\{(A_j, H_j, D_j), (\phi_{j,k}, I_{j,k})_{j \le k}\}_J,\$$

an inductive realization consists of $A = \lim A_j$, $H = \lim H_j$, $\pi = \lim \pi_j$, $\mathcal{A} = \lim \mathcal{A}_j$ and D defined by $D\xi = I_j D_j \xi_j$ on $\xi = I_j \xi_j$, $\xi_j \in \text{dom}(D_j)$. A priori, it *need not be a spectral triple*.

> Nadia S. Larsen University of Oslo

Spectral triples and inductive limits

Theorem (Floricel-Ghorbanpour (2019)) Given an inductive system of spectral triples

 $\{(A_j, H_j, D_j), (\phi_{j,k}, I_{j,k})_{j\leq k}\}_J,$

with inductive realization (A, H, D) and $A = \lim A_j$, the following hold:

(a) D has compact resolvent iff the sequence $\{I_j R_{\lambda}(D_j) I_j^*\}_{j \in \mathbb{N}}$ converges uniformly to $R_{\lambda}(D)$ for some (every) $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

(b) The operator $[D, \pi(\phi_j(a))]$ is bounded if and only if the family of operators $\{[D_k, \pi_k(\phi_{j,k}(a))]\}_{k \ge j}$ is uniformly bounded.

Examples here: systems whose inductive realizations are spectral triples for AF-algebras (motivated by work of Christensen-Ivan).

Nadia S. Larsen University of Oslo

Restriction to noncommutative tori

Proposition

Fix $p, \theta \in \Omega_p$, $n \in \mathbb{N}$. The restriction $\mathbb{L}_{p,n}$ of \mathbb{L}_p to $\frac{1}{p^n}\mathbb{Z}$ is a length function of bounded doubling. For every $\theta \in \Omega_p$, let

$$\pi_{\theta_{2n}}: C^*(\mathbb{Z}^2, \sigma_{\theta_{2n}}) \to B(\ell^2(\Gamma_n))$$

be the regular representation of $C^*(\Gamma_n, (\sigma_\theta)_n)$ followed by

$$C^*(\mathbb{Z}^2, \sigma_{\theta_{2n}}) \cong C^*(\Gamma_n, (\sigma_{\theta})_n).$$

The triple (obtained by restricting \mathcal{D}_p to $\ell^2(\Gamma_n)$)

$$(C^*(\mathbb{Z}^2, \sigma_{\theta_{2n}}), \ell^2(\Gamma_n), D_{p,n})$$

with representation $\pi_{\theta_{2n}}$ is a spectral triple for the noncommutative torus $C^*(\mathbb{Z}^2, \sigma_{\theta_{2n}})$, with smooth subalgebra $C_C(\mathbb{Z}^2, \sigma_{\theta_{2n}})$.

> Nadia S. Larsen University of Oslo

The spectral triple on $\mathcal{A}^{\mathcal{S}}_{\theta}$ as inductive limit

Theorem (Farsi-Landry-L-Packer) Fix a prime p. Let $\Gamma = \mathbb{Z}\begin{bmatrix} \frac{1}{p} \end{bmatrix} \times \mathbb{Z}\begin{bmatrix} \frac{1}{p} \end{bmatrix}$ and for each $j \in \mathbb{N}$, set $\Gamma_j = \frac{1}{p^j}\mathbb{Z} \times \frac{1}{p^j}\mathbb{Z}$. For every $\theta \in \Omega_p$, the triple $(\mathcal{A}^S_{\theta}, \ell^2(\Gamma), \mathcal{D}_p)$ with smooth subalgebra $C_C(\Gamma, \sigma_{\theta})$ can be written as the inductive realization of

$$\{(C^*(\mathbb{Z}^2,\sigma_{\theta_{2j}}),\ell^2(\Gamma_j),D_{p,j}),(\phi_{j,k},I_{j,k})\}_{j\in\mathbb{N}},$$

each term with smooth subalgebra $(C_C(\mathbb{Z}^2, \sigma_{\theta_{2j}}))$. Furthermore, the inductive realization $(\mathcal{A}^S_{\theta}, \ell^2(\Gamma), \mathcal{D}_p)$ of the inductive system is itself a spectral triple, with compatible associated smooth subalgebras.

Need $\{I_j(D_{p,j}-it)^{-1}I_j^*\}_{j\in\mathbb{N}}$ to converge in norm to $(\mathcal{D}_p-it)^{-1}$, and the family of commutators $\{[D_{p,k}, \pi_{\theta_{2k}}(\phi_{J,k}(g))]\}_{k\geq J}$ to be uniformly bounded.

> Nadia S. Larsen University of Oslo

Quantum compact metric spaces

A quantum compact metric space (A, L) is an ordered pair where A is a unital C*-algebra and L is a seminorm defined on a dense *-subalgebra dom(L) of the self-adjoint elements A_{sa} such that:

(1)
$$\{a \in A_{sa} : L(a) = 0\} = \mathbb{R}1_A$$
,

(2) the Monge-Kantorovich metric mk_L, defined on the state space S(A) of A by setting for all φ, ψ ∈ S(A):

 $\mathsf{mk}_L(\varphi,\psi) = \sup \left\{ |\varphi(a) - \psi(a)| : a \in \mathsf{dom}(L), L(a) \le 1 \right\}$

metrizes the weak* topology restricted to the state space S(A) of A.

Such *L* on *A* is referred to as a **Lip-norm**.

Nadia S. Larsen University of Oslo A pair (A, L) with L being a Lip-norm on A is a **Leibniz quantum compact metric space** provided that L is lower semicontinuous wrt the norm topology restricted on its domain and, further, L satisfies

Leibniz quantum compact metric spaces

$$\max\left\{L\left(\frac{ab+ba}{2}\right),L\left(\frac{ab-ba}{2i}\right)\right\} \leq L(a) \|b\| + \|a\| L(b).$$

Relying on characterisations due to Long-Wu of Lip-norms on twisted group C*-algebras with length functions of bounded doubling (extending results of Christ-Rieffel), we have:

Theorem (Farsi-Landry-L-Packer)

For each prime p and $\theta \in \Omega_p$, the nc solenoid $\mathcal{A}^{\mathcal{S}}_{\theta}$ with $L_{\mathcal{D}_p}$ given by

$$L_{\mathcal{D}_{p}}(a) = \|[\mathcal{D}_{p}, \lambda_{\sigma}(a)]\|_{B(\ell^{2}(\Gamma))}$$

is a Leibniz quantum compact metric space.

Nadia S. Larsen University of Oslo

Noncommutative solenoids - smooth subalgebras

Let G be a locally compact group and σ a multiplier on G. Assume that $L_1(G_c)$ is symmetric, with $G_c = G \times \mathbb{T}$ the Mackey group of C. Then $L^1(G, c)$ is symmetric. In particular, for any faithful representation $\pi : L^1(G, \sigma) \to B(H)$,

$$spec_{L^1(G,\sigma)}(f) = spec_{B(H)}(\pi(f))$$
 (1)

for each $f \in L^1(G, \sigma)$.

Theorem (Austad, 2021)

Combining this with results of Ludwig, we get the following:

Lemma

Let Γ be a countable discrete nilpotent group and σ a multiplier on Γ . Recall the left- σ regular representation on $\ell^1(\Gamma, \sigma)$. If $f \in \ell^1(\Gamma, \sigma)$, then

$$spec_{\ell^{1}(\Gamma,\sigma)}(f) = spec_{B(\ell^{2}(\Gamma))}(\lambda_{\sigma}(f)).$$
 (2)

Nadia S. Larsen University of Oslo

A Wiener's lemma for twisted group C^* -algebras

Extending Jolissaint's work to the twisted case, via results of Austad and Schweitzer, we obtain:

Theorem (Farsi-Landry-L-Packer)

Let Γ be a countable discrete nilpotent group and σ a multiplier on Γ . Suppose that \mathbb{L} is a length function on Γ . Then the twisted Fréchet *-subalgebra $H^{1,\infty}_{\mathbb{L}}(\Gamma,\sigma)$ is dense and has the property of spectral invariance in $C^*(\Gamma,\sigma)$. Therefore, $H^{1,\infty}_{\mathbb{L}}(\Gamma,\sigma)$ is stable in $C^*(\Gamma,\sigma)$ under the holomorphic functional calculus.

> Nadia S. Larsen University of Oslo

Nc solenoids - fully fledged spectral triple

Theorem (Farsi-Landry-L-Packer) Fix a prime p. Let $\Gamma = \mathbb{Z}\begin{bmatrix} \frac{1}{p} \end{bmatrix} \times \mathbb{Z}\begin{bmatrix} \frac{1}{p} \end{bmatrix}$. For every $\theta \in \Omega_p$, $(\mathcal{A}^{\mathcal{S}}_{\theta}, \ell^2(\Gamma), \mathcal{D}_p)$ with representation $\lambda_{\sigma_{\theta}}$ is a spectral triple for the noncommutative solenoid $C^*(\Gamma, \sigma_{\theta}) = \mathcal{A}^{\mathcal{S}}_{\theta}$, with associated smooth subalgebra

$$H^{1,\infty}_{\mathbb{L}}(\Gamma,\sigma_{ heta})=\{f:\Gamma
ightarrow\mathbb{C}\mid\sum_{\gamma}|f(\gamma)(1+\mathbb{L}(\gamma))|<\infty\}.$$

Furthermore, the twisted Fréchet *-subalgebra $H^{1,\infty}_{\mathbb{L}}(\Gamma, \sigma_{\theta})$ is a proper dense subalgebra of $C^*(\Gamma, \sigma_{\theta}) = \mathcal{A}^{\mathcal{S}}_{\theta}$ that is stable under the holomorphic functional calculus.

THANK YOU.